Computational Study of Traveling Wave Solutions and Global Stability of Predator-Prey Models
نویسندگان
چکیده
In this thesis, we study two types of reaction-diffusion systems which have direct applications in understanding wide range of phenomena in chemical reaction, biological pattern formation and theoretical ecology. The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial growth and competition in a flow reactor. In the context of isothermal autocatalytic systems, two different cases will be studied. The first is autocatalytic chemical reaction of order m without decay. The second is chemical reaction of order m with a decay of order l, where m and l are positive integers and m > l ≥ 1. A typical system is A + 2B → 3B and B → C involving three chemical species, a reactant A and an autocatalyst B and C an inert chemical species. We use numerical computation to give more accurate estimates on minimum speed of traveling waves for autocatalytic reaction without decay, providing useful insight in the study of stability of traveling waves. For autocatalytic reaction of order m = 2 with linear decay l = 1, which has a particular important role in biological pattern formation, it is shown numerically that there exist multiple traveling waves with 1, 2 and 3 peaks with certain choices of parameters. The second part of this thesis is on the global stability of diffusive predator-prey system of Leslie Type and Holling-Tanner Type in a bounded domain Ω ⊂ R with no-flux boundary condition. By using a new approach, we establish much improved global asymptotic stability of a unique positive equilibrium solution. We also show the result can be extended to more general type of systems with heterogeneous environment and/or other kind of kinetic terms.
منابع مشابه
The Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model
Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic. In the present paper, some predator-prey models in which two ecologically inte...
متن کاملThe Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations
Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کاملThreshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کامل